Geodesic lines–Asymptotic lines –Surfaces of revolution of constant Gaussian curvature
#surface of revolution#constant curvature#constant Gaussian curvature#negative curvature#geodesic line#asymptotic line#conical singularity#Bacharach#Brill
Date of design: 1877
Designer: J. Bacharach under supervision of Prof. Dr. L. Brill in TU München
Title in the catalog: (de) Rotationsfläche von constantem negativen Krümmungsmaß (Kegel-Typus) nebst geodatischen und Asymptoten-Linien.
Size: 17x17 cm
Price in the catalog: 10.50 marks (1911)
Surface with rotational symmetry, constant nagative Gaussian curvature with conical type singularity. The surface is obtained by revolution of a profile curve $(x(t),y(t))$ around the $y$-axes with
$x(t) = \sqrt{1 - a^2} \sinh t$,
$y(t) = \int_0^t \sqrt{1 - a^2 \sin^2 \tau} d\tau$,
and $0 < a < 1$.
The model shows behaviour of geodesic and asymptotic lines on such surfaces.
See more...